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Abstract-A theoretical examination is made of convection, induced by applied thermal and solutal 
coplanar gradients inclined to the vertical and with net horizontal mass flux, in a shallow horizontal layer 
of a saturated porous medium. The horizontal components of these gradients induce a Hadley circulation 
superimposed on the net horizontal flow. The combined flow becomes unstable when the vertical com- 
ponents are sufficiently large. The solid matrix of the saturated medium is assumed adiabatic (heat capacity 
ratio/porosity = 1). A linear stability analysis is carried out, and calculations are made using Galerkin 
approximation for the various modes of instability. The orientation of the preferred mode and the other 
critical quantities are determined for representative parameter values. Our results, when complemented 
with results found in the literature for different parameter values, indicate that the horizontal gradient 

effect switches from stabilizing to destabilizing as the magnitude of the gradient increases. 

1. INTRODUCTION 

ALTHOUGH a large number of papers have dealt 
with the natural convection, in a horizontal layer, 
induced by either horizontal or vertical temperature 
gradients, very few have dealt with the more general 
situation of inclined temperature gradients. The case 
of convection iii a viscous fluid has been treated by 
Weber [l, 21, Sweet et al. [3], Bhattacharyya and 
Nadoor [4] and Nadoor and Bhattacharyya [5], and 
that of convection in a porous medium by Nield [6,7] 
and Nield et al. [8]. The problem is complex, and 
each of the above publications have dealt with the 
simplified problem of flow in the central section of a 
shallow horizontal layer, one whose height-to-length 
and height-to-breadth ratios are small, so that the 
effect of lateral walls is to confine the fluid but it is 
otherwise negligible. We believe that this simpli- 
fied problem is paradigmatic for more complicated 
problems involving imposed inclined temperature 
gradients. 

With one exception, the work to date has been 
concerned with the case of a Hadley circulation, with 
zero net flow. Nield (61 treated the extension to non- 
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zero net horizontal flow. Also, of the above papers, the 
only one dealing with the double-diffusive situation, 
where both thermal and solutal gradients are applied, 
is that by Nield et al. [8]. The present paper deals 
with the double-diffusive situation with nonzero net 
horizontal flow. Now the possible parameter space to 
be explored is even larger than before and in order to 
do this rapidly we have again been content to use 
a low order Galerkin approximation, the order of 
accuracy of which has been determined in a previous 
work (Nield [7]). For this report we have been nar- 
rowly selective in our choice of parameters used for 
computation. We have dealt only with the case of 
coplanar imposed thermal and solutal gradients. We 
have considered only the case of Dirichlet type bound- 
ary conditions on the perturbation temperature and 
concentration. Here we have considered flow in a satu- 
rated porous medium, and have postponed study of 
the analogous problem of flow in a clear fluid, for 
which the differential equation system is of higher 
order and there is an extra parameter (the Prandtl 
number) to vary. 

Our work is of relevance to various geological and 
environmental situations in which thermohaline con- 
vection in a porous medium is applicable, such as 
those referred to by Sarkar and Phillips [9]. 
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NOMENCLATURE 

volumetric specific heat ratio 
matrix element, equation (28) 
dimensional and nondimensional 
concentration 
so&al diffusivity 
constants 
gravity acceleration 
unitary vertical vector, equation (8) 
layer height 
imaginary unit number 
trial function number 
thermal conductivity 
permeability 
Lewis number 
buoyancy ratio 
dimensional and nondimensional 
pressure 
dimensional and nondimensional net 
flow magnitude 
thermal Rayleigh number 
horizontal wavenumber components 
solutal Rayleigh number 
horizontal thermal and solutal 
Rayleigh number 
time 
temperature 
Darcy velocity components 

U, V, W nondimensional Darcy velocity 
components 

x, y, z Cartesian coordinates 
X, Y, Z nondimensional Cartesian 

coordinates. 

Greek symbols 
thermal diffusivity 
gradient vector horizontal 
component 

: 
expansion coefficient 
Kronecker delta 

A difference 
& relative error 
rl horizontal wavenumber 
0 nondimensional temperature 
a group parameter, equation 

(17) 
P dynamic viscosity 
P density 
d frequency, equation (22) 
T nondimensional time 
4 porosity 

& 
specific heat 
horizontal angle measured from 
x-axis. 

Superscripts 
function of z only 
perturbation variable. 

Subscripts 
C concentration 
f fluid 
H horizontal 
j index 
m porous medium 
R thermal 
S steady state 
S solutal 
SR thermal and solutal 
T temperature 
0 reference value 
x, Y horizontal 
Z vertical. 

2. BASIC EQUATIONS 

The situation considered is that illustrated in Fig. 
1. The Cartesian axes are chosen with the z-axis ver- 
tically upwards and the x-axis in the direction of the 
net flow, of magnitude q. The porous medium occu- 
pies a layer of height H. The vertical temperature 
difference across the boundaries is AT and the vertical 
concentration difference is AC. The imposed hori- 
zontal thermal and concentration gradient vectors are 
(BTX, &) and (BcX, BcJ, respectively. 

We assume that the Oberbeck-Boussinesq approxi- 
mation is valid, and that flow in the porous medium is 
governed by Darcy’s law. Accordingly the governing 
equations are 

v-v = 0, (1) 

0 = -VP - (P/I+ + prg, (2) 

(px),(aT/at)+(px)rv’VT= k,,V2T, (3) 

~(&+t)+v~Vc = D,V2c, (4) 

pf = POP --MT-To)--Y,(c-cdl. (5) 

Here (u, v, w) = v,p, T and c are the seepage (Darcy) 
velocity vector, pressure, temperature and concen- 
tration, respectively. The subscripts m and f refer to 
the porous medium and the fluid, respectively. Also 
p. p and x denote viscosity, density and specific heat, 
while K and 4 are the permeability and porosity of 
the medium, k,,, and D,,, are the thermal conductivity 
and solutal diffusivity of the medium, and yT is the 
thermal expansion coefficient and yc the cor- 
responding solutal parameter. Notice that, although 
yc is normally a negative quantity, we prefer to main- 
tain a symmetrical notation in here. 
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T=To-AT/2+,x-hyy 

z= H/2 

z=-H/2 

T=To+AT/2+,x+,y 

c = co + AC 12 - pc,x - &y 

FIG. I. Fluid saturated porous medium layer bounded by two horizontal impermeable solid surfaces. 

The boundary conditions are 

w=O, T= To-(kAT)/2-/3,,x-&,y, 

c = co - ( + Ac)/2 - /Lx - Bcyy, at t=fH/2. 
(6) 

We define non-dimensional quantities by 

(X, Y, 2) = X = x/H, z = LY, t/aH’, 

(U, I’, W) = V = Hv/a,, P = fafh~4lwn, 

0 = R,(T- T,)/AT, C = S,(c-co)/Ac, 

where 

4n = U(&X)f, n = (~X)rnl(~OX)f~ 

R, = powTKHATI/%> S, = posycKHAcl@,. 

We refer to R, as the vertical thermal Rayleigh number 
and S, as the vertical solutal Rayleigh number. In 
terms of the Lewis number Le = a,/D, and the buoy- 
ancy ratio N = ycAc/y,AT we have S, = N Le R,. We 
also introduce horizontal thermal and solutal Ray- 
leigh numbers defined by 

Rx = PomK~i%x/en~ 

R, = pocn+KH*Pd~~m~ 

Sx = ~os~cKH*Bc-xl&n, 

S, = ~o~YcK~Bcyl~Qn. 

The governing equations now take the form 

v+v=o, (7) 

0 = -VP-V+@+Le-‘C)h, (8) 

ae/az+veve = V*B, (9) 

(4/a)ac/a7+v.vc = ix1v*c, (10) 
with h being the unit vector in the vertical direction. 
The boundary conditions are now 

W= 0, 0 = -(kR,)/2-R,X-R,Y, 

C = -(k&)/2-SxX-Ss,Y at Z = + l/2. (11) 

The nondimensional net flow is defined as the P&let 

Q = qffhn. (12) 

The scalings used for time and velocity, although 
somewhat arbitrary in the double-diffusive context, 
have the advantage of putting (9) in its simplest form 
and groups a and r$ together in (10). It is noteworthy 
that (7)-( 10) are dependent on R, and S, only through 
the boundary conditions, a consequence of the scal- 
ings that we use for temperature and concentration. 
The benefit of this approach is that all the Rayleigh 
numbers later appear in the perturbation equations 
via the steady-state solution only. 

3. STEADY-STATE SOLUTION 

Equations (7)-(11) have a steady-state solution of 
the form 

0, = T(Z)-R,X-R,Y, C, = c(Z)-S,X-Ss,Y, 

us = O(Z), v, = P(Z), 

w, = 0, P, = P(X, Y, Z). 

This is a solution provided 

do 
do = R, + SJLe, 

dp 
z = R, + S,/Le, 

d’& -= 
dZ2 

-OR,-FR,, 

Y’ 

The new flow specification, with Q aligned with the x- 
axis, requires that 

(@=Q, (r)=O. 

Here the angle brackets denote an average with respect 
to the vertical coordinate, i.e. an integral with respect 
to Z from -$ to +. 

The steady-state solution is thus 

number, 0 = (R, + S,/Le)Z+ Q, (13) 
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P = (R, +S,/Le)Z, (14) 

8 = -RzZ+$,(Z-4Z3)++QR,(1--42’) (15) 

c= -S,Z+$,(Z-4Z3)+;LeQSX(1-42’) 

(16) 

where 

I, = Rj + R: + (Rx& + R,S,)/Le, 

1, = S,‘+S~+Le(R,S,+R,S,). (17) 

The flow given by equations (13) and (14) with Q = 0 
is commonly referred to as a Hadley circulation. We 
shall refer to the flow with Q # 0 as the “modified 
Hadley circulation”. 

We define the thermal and solutal Rayleigh number 
vectors by R = (Rx, R,, Rz), S = (S,, S,, S,). We note 
that here, with Q # 0, the modified Hadley circulation 
is no longer in the same vertical plane as that con- 
taining the vector R + S/Le. 

4. STABILITY ANALYSIS 

We now perturb the steady-state solution and write 
V=V,+V’,B=B,+tY,C=C,+C’,P=P,+P’.The 
linearized perturbation equations are 

V-V’ = 0, (18) 

VP’+V’-(@+C’Le-‘)h = 0, (19) 

ae’ ’ ’ 
?r+o&+v;Y-R,VR,r+ g W’=V’B’, 

( -1 

(20) 

4 ac _ac _ac 0 ; ~+U~+v”-s_S”-syV’ 

dC , + E,, W = Le-‘V2CI. (21) 0 
We make the normal mode expansion 

[(I’, v’, w’, 8’, c’, p’] 

= [U(Z), V(z>, W(Z), O(Z), C(Z), w?l 

x exp (i(rX+sY-az)}. (22) 

We substitute this into the perturbation equations 
(18)-(21) and eliminate P, U and V from the resulting 
equations to obtain 

(23) 

_ 

+iq~‘(rR,+sR,)~~- (24) 

+i?-‘(r&+ss,)g- g w=o, ( I (25) 

where q = (?+?)‘I2 is the overall horizontal wave- 
number. We define the wavenumber vector by 
‘t = (r, s, 0). 

The last three equations must be solved subject 
to appropriate boundary conditions. For the case of 
impermeable, isothermal, isosolutal boundaries we 
have 

W=%=C=O at Z=i-+. (26) 

The problem is now reduced to that of solving the 
equations (23)-(26), where 

dT” 
-= -R,++4”,(l-12Z2)-QRxZ, 
dZ 

dC” 
dZ= 

-S~+~~‘(‘-12Z2)-QLeS”z_ (27) 

For the particular case of Le = $/a = 1, the eigen- 
value problem reduces to the same as for the mono- 
diffusive case treated by Nield [6], but with R,, R,, R, 
replaced by Rx+ S,, R, + S,,, R,+ S,, and with 0 
replaced by 0 + C. 

In the general case, we may regard R, as the eigen- 
value, with Le, Q, 4, a, R,, R,, S,, S,, S,, 6, r and s as 
parameters. The critical value of R, is its minimum as 
CJ, r, s are varied with s constrained so that R, is real. 

5. GALERKIN APPROXIMATION 

Considering the large parameter space involved in 
the present study, it is convenient to employ a low 
order Galerkin approximation sufficiently accurate 
for the purpose in hand. 

We select as trial functions, which satisfy the bound- 
ary conditions, 

W2j~l = 85-1 = C*,~, =COS(2j_l)aZ, (28) 

W, = e2, = C2, = sin2jnZ, (29) 

forj = 1,2,. 

For the second order approximation, for example, 
we put 

W= E,W,+E,W,, % = F,%,+F,t’,, 

C = G,C, + G2C2 

and substitute into the three equations (23)-(25). We 
multiply the first equation by W,, the second by f?,, 
the third by C1, repeat the process with W,, %2, C,, then 
integrate each term with respect to Z from -l/2 to 
l/2, perform some integrations by parts utilizing the 
boundary conditions, and eliminate the constants 
E,, E2, F,, F,, G, and G2 from the resulting six homo- 
geneous linear equations. We thus obtain the 
eigenvalue equation in the form 
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det [A,,] = 0, 

where, for m, n = 1,2, 

(30) 

A3m-2,3n-2 = 
dW,,, dW,, 
-__ dZ dZ +r12wmwn , 

> 

A3m-2,3n-I = -v2<WmRJ, 

A3m-2,3n = -rlZLe-'(WmC,>, 

A3m-L,3n-2 = g0, W, -iqm2(rR, +sR,)H,~ , 
i ) 

A3,,_,+, = s 2 +(q2-i[a-r~-s~)&,0, 

A3m-1,3n = 0, 

A 3m,3n-2 = 

A 3m,3n-1 - - 0, 

A 
dC,,, dC,, 

3nL3" = 
L"-'dzdz 

The various integrals involved are easily evaluated. 
For example, one obtains 

< Win Wll> = 4n,/2, 

(Ztl,W,) = 4mnvmn 
7t2[m2 -n212 ’ 

where 

VIII” = 

I 

0 if (m+n) is even, 
1 if (m+n+ 1)/2 is even, 

-1 if(m+n+1)/2isodd. 

Hence one finds that 

A,, = (n2+q2)/2, A,* = -q2/2, 

Al3 = -Le-‘q2/2, Al, = AIS = A,, = 0, (31) 

A2, = -R,/2+A,/87c2, A,, = (x2 +r$ -i(a-rQ))/2, 

A23 = 0, A24 = -8R,Q/9n2-4iq*R/3q2, 

A25 = 8i{q*R+Le-‘q*S}/9n2, A26 = 0, (32) 

A,, = -Sz/2+12/87c2, Aj2 = 0, 

A33 = {Le-‘(n2+q2)-i(+a/a-rQ)}/2, 

A,, = -8LeSxQ/9n2-4iq*S/3q2, A,, = 0, 

A,, = 8i{q*R+Le-‘q*S}/9n2, (33) 

A,, = A,, = Aa = 0, A,,4 = (47~~ +q2)/2, 

A,, = -q2/2, A,, = -Le-‘q2/2, (34) 

AS, = -8R,Q/9x2+4iq.R/3q2, 

A,, = %{q.R+Le-‘q*S}/9n2, AS3 = 0, 

A,, = -R,/2+1,/32n2, 

A,, = (47c2+q2-i(a-rQ))/2, A,, = 0, (35) 

A,, = -8LeSxQ/9n2+4iq*S/3q2, AC2 = 0, 

A,, = 8i{~*R+Le-‘tf*S}/9rr2, 

A,, = -Sz/2+12/32~2, Ae5 = 0, 

Ae6 = {Le-‘(4n2+q2)--i(@/a-rQ)}/2. (36) 

6. NUMERICAL PROCEDURE 

We have developed a Fortran program to compute 
R, so that we could search for the minimum (critical) 
value of R,, as the horizontal wavenumber vector 
r/ = (r,s,O) = n(cosY,sinY,O) and the time fre- 
quency G varies. We have capitalized on the fact that 
(30) is quadratic in R,. This means that we can cal- 
culate approximations for the two lowest eigenvalues 
for any given set of parameter values. We are inter- 
ested in the smallest real value of R,, and hence in the 
smaller of the two real roots. 

The process of finding the minimum R, starts with 
writing the matrix A,, in algebraic (symbolic) form. 
Then det [A,,,,J is expanded using Mathematics, a 
symbolic manipulation software package, with all the 
coefficients written in rational form to enhance 
numerical accuracy. The resulting expression is fac- 
tored with respect to powers of R, in order to identify 
the coefficients of the quadratic equation in R,. Each 
of these coefficients are then factored with respect to 
q and Q in that order. One finds that the real and 
imaginary parts of the coefficients of the powers of R, 
have the general forms 

(12”+l~a(l+~2+~2)+,2n(i+.2+.4+Q2+~4)} 

and 

{r/2”+‘Q(l+02+Q2) 

respectively. 
The algebraic expressions for the two roots are then 

put into a Fortran program and evaluated using 
double precision: Each R, root is a function of eleven 
parameters, 

R, = f (v, y, c, RX, S,, R,, S,, S,, Q, 44, W 
Considering the case of coplanar horizontal gradi- 
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ents, we present our results in terms of horizontal 
Rayleigh number vectors, using the transformation 

R, = RH cosYs,, R, = R, sinY’,,, 

S, = Sn cos YSR, S, = Sn sin YsR, (37) 

where the horizontal angle Y’,, locates the vertical 
plane that contains both horizontal gradients. This 
angle is measured counterclockwise from the x-axis 
and obtained as 

Ys, = arccot = arccot( (38) 

Notice that equation (38) reveals the range of Ys, 
from 0” to 180”. It follows from equation (37) that R, 
and Sn are 

R 
&, = x SX 

cos Ys, 
and SH = ~ 

cos Y’,, 

if YsR is different than 90”, otherwise, RH = R, and 
Sn = s,. 

For each evaluation of a R, root, the values of S,, 
R,, YR and Sn and Ys were selected. Within the (r 
range where Im(R,) = 0, the values of e and the 
wavenumber parameters q, Y were varied to give the 
minimum value of Re(R,). Here a non-real value of 
R, indicates the nonexistence of any unstable mode 
for the particular parameter values. We utilized the 
fact that Im(R,) is a fourth degree polynomial in 0. 
We found that, in most cases examined here, the smal- 
lest o-root gave the smallest R,. 

We have restricted the values of RH and Sn to those 
for which the second order Galerkin approximation 
can be expected to give results which are sufficiently 
accurate to be useful. We have found that a second- 
order approximation appears to give values of the 
critical vertical Rayleigh number accurate to within 
about 3% when both ii and & are less than 1000, and 
QRjR, and Q Le SJS, are not too large. The accuracy 
deteriorates rapidly for higher values of the mag- 
nitudes of 1, ana &. For instance, Table 1 presents 
the comparison between results obtained with a 2nd- 
order Galerkin approximation and results obtained 
with 3rd-, 4th- and Sth-order approximations, using 
the same trial functions, for the case Q = YsR = 
S, = 0, Le = RH = 10. The comparative parameter is 
the relative percentage error, a, defined as 

E= 
/R;“d-RzDrdI x looy 

R2”d 0, 

z 

where Rind and RFd are critical vertical thermal Ray- 
leigh numbers obtained using, respectively, 2nd and 
higher order approximations. The main factor deter- 
mining the accuracy appears to be the deviation from 
linearity of the basic thermal and solutal profiles. 

The expressions for R, are periodic in Y, with period 
180”, only when Ys, = 0” or 180”. For these cases, we 
restrict the calculations to the interval 0” < Y < 180”. 
All the other configurations have to be investigated 

Table 1. Comparison between critical values obtained 
with 2nd and higher order Galerkin approximation 

(Q = ‘I’s, = S, = 0, Le = R,, = 10) 

Y 
Order SH R, (T (degrees) 1 E 

2 1 44.602 0 90 3.1 0 
3 44.587 0 90 3.1 0.0034 
4 44.587 0 90 3.1 0.0034 
5 44.587 0 90 3.1 0.0034 
2 10 70.135 0 90 3.1 0 
3 69.549 0 90 3.2 0.835 
4 69.549 0 90 3.2 0.835 
5 69.545 0 90 3.2 0.841 
2 20 103.31 0 90 3.1 0 
3 100.61 0 90 3.3 2.61 
4 100.61 0 90 3.3 2.61 
5 100.58 0 90 3.3 2.64 
2 50 206.36 0 90 6.3 0 
3 174.44 0 90 6.8 15.47 
4 166.45 0 90 7.4 19.34 
5 168.05 0 90 6.4 18.56 

__ 

considering the entire domain 0” < Y < 360”. After 
locating the region containing the absolute minimum 
of R,, we determined the minimum using a step-size 
which was typically 0.1” for Y and 10m6 for c(, and, for 
the oscillatory modes, we determined c to within 10-6. 
Hence the numerical inaccuracy is much less than the 
inaccuracy arising from the Galerkin approximation. 

7. RESULTS 

In the present study, we keep the Lewis number, 
Le, constant equal to 10 and U/C#J = 1 throughout the 
calculations. This Lewis number is roughly rep- 
resentative for experiments with a sugar-salt system. 
The transient parameter, a/$~, affects only the oscil- 
latory modes. The value chosen for a/d is also appro- 
priate for that system. The angle Ys, varies from 0” 
to 180” in 45” intervals, and the net flow, Q, covers 
the range O-15. To study the vertical concentration 
gradient effect, we select the values 0, 10, 20, 50 and 
100 for S,. 

We compare our computations, for Q = 0, against 
the results of Nield et al. [8], obtaining perfect agree- 
ment. As a double check, we perform calculations 
considering temperature gradients only. Figure 2 pre- 
sents critical vertical Rayleigh numbers, side by side 
with the ones obtained by Nield [6] using polynomial 
trial functions, for varying Q. The results are in gen- 
eral good agreement. The result obtained by Nield 
[7] for the monodiffusive situation, that there are no 
unstable longitudinal (with respect to the applied hori- 
zontal gradient) oscillatory modes for the case of zero 
Q, holds also for nonzero Q. This can be demonstrated 
by putting r = 0 (and also R, = S, = S, = S, = 0, and 
Le tending to infinity) in equation (30), expanding the 
determinant, taking the real and imaginary parts of 
the equation, and eliminating R, from the resulting 
two equations. One can thus express a2 as the negative 
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01”“““““,“‘,‘,‘,“ll\i” 
0 2 4 6 8 10 12 14 

Q 
FIG. 2. Comparison of values of the critical Rayleigh number 

with results from Nield (1990). 

of the sum of two squared expressions, and this implies 
that sigma can have no nonzero real value. (The earlier 
argument, in Nield [6], is inadequate.) We agree with 
Nield’s [7] conclusion that the stabilizing effect of R, 
deteriorates when Q increases beyond a certain limit 
value. However, our results indicate a weaker effect 
of RH upon Q-limit with the former being almost 
constant and approximately equal to 11.4. 

In Fig. 3, we compare the evolution with Q of the 
critical Rayleigh number, R,, for three different YsR 
values, namely 0”, 45” and 90”, with RH equal to 1 and 
S, equal to 10. The arrows indicate the direction of 
S, increase, from 0 to 100. It is noteworthy that by 
using (Q cos YsR) instead of Q as abscissa the curves 
for YsR = 45” fall on top of the curves for YSR = 0”. 
Moreover the net flow seems to have no effect, for the 
considered Q range? on the stability of the system 
when YsR = 90”. This indicates that, for small Q, it is 
the component of the net horizontal flow in the direc- 
tion of the applied thermal and solutal gradients which 
has the major effect on the stability. The curves are 
smooth, with critical mode switching between oscil- 
latory and nonoscillatory, the later predominating at 
small Q as YSR tends to 0”. The coplanar angle, YsR, 
has a stabilizing effect as it goes from 0” to 90” (or 
destabilizing from 90” to IgO’) for constant Q. For 
all cases, larger concentration Rayleigh numbers, S,, 
have an increasing destabilizing effect, as expected. 
Note that the curves are displaced vertically by 
approximately the amount in which S, changes, 
so that the effects of R, and S, are approximately 
additive. 

The horizontal thermal Rayleigh number effect, 
for S, = 10 and YSR = O”, is exemplified in Fig. 4. 
Here, we plot the critical Rayleigh numbers for three 
RH values, for Q equal to 2 and 5. Important obser- 

vations from this figure include : the linear relationship 
between R, and S, (observe that, except for the oscil- 
latory mode when S, is small, all curves have the same 
inclination), and the stabilizing effect of RH when RN 
goes from negative to positive values (from opposite 
to same orientation as Q). 

Figure 5 focuses upon the Sn effect, with RH = 10, 
YsR equal to 0” (top) and 90” (bottom), and S, equal 
to 0 (left), 20 (center) and 100 (right). Notice that 
results for S, = f 100 are included mainly to show 
the qualitative trends since, as pointed out previously, 
for these high values our 2nd-order approximation 
yields much lower accuracy. For the considered Q 
range, the net flow has a small effect on the stability 
of the system when YsR = 90”, with the destabilizing 
net flow effect being reduced as YsR tends to 90”. In 
the top row graphs, we identify the dual effect of 
increasing Sn. Consider for instance S, = 20, a case 
shown by the top-center graph. As Sn increases from 
0 to 10, the system becomes more stable if Q < 4 and 
more unstable if Q > 4. This behavior mimics the RH 
effect found by Nield [6] when studying net flow with 
thermal horizontal gradient only. To better under- 
stand the Sn effect, we present Fig. 6, for YsR = O”, 
RH = 10, and S, from 0 to 100. In here, we plot R, 
against S,, for various Q values. The dual effect is 
observed for the curves with horizontal tangent: 
Q < 1 for S, = 0, Q < 2 for S, = 20, and Q < 3 for 
S, = 100. The dashed lines in the bottom graphs 
(which are details of the top graphs) link the locations 
of maximum R, (S, dual) for each Q. Numerical 
values of S, dual as a function of Q allow us to build 
Fig. 7. With a fixed Q, for each S, curve, values of S, 
above or below the curve lead to smaller critical R,. 

An important issue revealed by the previous results 
is the net flow directional effect. In our analysis, we 
consider the net flow direction as fixed and aligned 
with the x-axis, and the coplanar horizontal gradient 
direction, YsR, as variable. 

The net flow has two distinct effects. One of them 
is similar to the one indicated by Nield [7] for inclined 
horizontal thermal gradient with no net flow: the 
energy of the disturbance is modified by a transfer 
of energy due to the interaction of the perturbation 
convective motion with the basic gradient. The same 
reasoning can be extended in here. Equations (27) 
show that Q can distort both, thermal and solutal, 
basic gradients, affecting the transfer of energy. When 
Q increases, its effects on the basic temperature and 
concentration gradients will be to decrease them 
within the bulk of fluid and to increase them near 
the boundaries. Notice that increasing a gradient is 
destabilizing if the relative expansion coefficient is 
positive (R, or S, > 0) or stabilizing if the coefficient 
is negative (Rz or S, < 0). 

The second effect of the net flow Q is to distort the 
basic flow field, namely the Hadley flow, as seen in 
equation (13). This effect is always destabilizing since 
the composite flow (“modified Hadley circulation”) 
has increased fluid motion near one of the horizontal 
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FIG. 4. Critical vertical Rayleigh numbers for SH = 10. 

boundaries (near the horizontal boundaries both 
gradients are largest, see equation (27)). The desta- 
bilization strength as Q increases is determined by the 
comparative strength of thermal and solutal gradients 
(recall that in this paper the large thermal and solutal 
gradients can be stabilizing or destabilizing depending 
on the expansion coefficient). That is why, in Fig. 5 
top, increasing Q has a stronger destabilizing effect 
when Su is large as shown by the inclination for 
SH = 10 being steeper than for S, = - 10. 

An explanatory comment is now made about an 
effect that is perhaps unexpected, namely the desta- 
bilizing effect (in some circumstances) of large Q even 
when perpendicular to the coplanar gradients 
(YsR = 90”). Examination of Fig. 5 shows that this 
effect is in fact a reduction in the stabilizing effect 
of the horizontal gradients, rather than a separate 

destabilization per se. When Y’,, = 90” the effect of Q 
on the basic vertical temperature and concentration 
gradients, see equation (27), is zero, but, if r is not 
zero, Q still has an effect on the stability problem 
via its contribution to the modified Hadley flow ; see 
equations (13), (24) and (25). The relevant situation 
is one for which RH and S, are both positive. In 
thermohaline terms, this means that the unmodified 
Hadley flow involves the movement of hotter, fresher 
(and hence less dense) water over cooler, saltier water, 
a situation that is stable. The effect of increasing Q is to 
increase the deviation of the alignment of the modified 
Hadley flow from that of the,unmodified flow. The 
component of each applied horizontal gradient in the 
direction of the flow is reduced, and it appears that 
at some stage this is accompanied by a reduction in 
stability. At the same time the relation between the 
growth rates of different disturbance is altered. Our 
results show that for the unmodified flow an oscil- 
latory mode is favoured, but a nonoscillatory mode is 
favoured when Q is large. We note that the favoured 
disturbance is one for which Y is zero (or 180’) ; 
this confirms that r is not zero. This means that the 
streamlines for the perturbation flow are in the (x, z) 
plane. 

Using the definition of horizontal temperature and 
concentration gradient vector, SR, in equation (40), 
a longitudinal mode is now defined to be one for which 
q is perpendicular to SR, and a transverse mode when 
q and SR are parallel. Note that this definition is 
different than the one used previously by Nield [6, 71 
and Nield et al. [8] based on the velocity vector 
(V, V,O) and q. However, both definitions yield the 
same results for the case Q = 0, in which the velocity 
vector and SR are parallel ; see equations (13) and 
(14). This is also true for the case r = V = 0 and 
Q # 0. 

As indicated by the results reported previously in 
Table 1, the favored modes are in general longitudinal. 
Recalling that Y and Ys, are the angles between the 
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x-axis and, respectively, the horizontal wavenumber 
vector and the co-planar gradient vector, the 
longitudinal and transverse modes directions are, 
respectively 

Y = YSR F90” (40) 

Y = YSR, or Y = YSR + 180”. (41) 

Equation (40), for longitudinal mode, helps explain 
once more why, even when the imposed horizontal 
gradients becomes perpendicular to the net flow, Q 
has an effect on critical R,, as seen in Fig. 5. Recall 
that the perturbations can have any orientation; that 
means they can act also in the direction of the net 
flow Q. As mentioned before, we generally obtain 
longitudinal favored modes, i.e. the perturbations are 
precisely in the same direction as Q. Exceptibns 
include, for instance, some oblique modes occurring 
for large S, values as indicated in Table 2. 

One of the reviewers has suggested a comparison 
between our results and results available in the litera- 
ture, specifically the ones for a similar problem pre- 
sented by Sarkar and Phillips [9]. Although it is always 
instructive to make comparisons with existing results, 
we justify in this section why this is not possible in the 
present case, unfortunately. We do, however, recon- 
cile an apparent discrepancy pointed out by the same 
reviewer between our conclusions and the conclusions 
reached by Sarkar and Phillips [9]. It is easy to verify 

that their definition of horizontal gradient, R, (p. 1167 
of their paper), can be written as : 

R, = SH+RH = S,(l-(l/Le)}, (42) 

where S, and RH are our horizontal thermal and solu- 
tal gradients, and Le is our Lewis number (notice that 
the Lewis number defined by Sarkar and Phillips [9] 
is equivalent to our Lewis number times porosity, 4 
Le). In their model, Sarkar and Phillips [9] imposed 
the mutually compensating horizontal gradients con- 
straint (third line of their equation (l)), written, using 
our nomenclature, as : 

YTBTx = --Y&x> (43) 

so their analysis is less general than the ones presented 
in here. Furthermore, they assumed (4 Le) - 100 and 
4 N 0.1, and this implies that Le - 1000. It follows 
that their horizontal gradient can be written as : R, = 
0.999&. In other words, they are effectively solving 
for relatively small horizontal temperature gradient 
(RH = -S,/lOOO) case as stated in their paper. 

Sarkar and Phillips’ [9] analysis is accurate for large 
horizontal gradient values, R, > 1000, that in our case 
translates into SH > 1000. However, as we have 
pointed out previously, the accuracy of our analysis 
deteriorates very rapidly as S, increases. We conclude 
then that both analyses are clearly complementary : it 
is unreasonable to perform the comparison suggested 
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Table 2. Critical vertical Rayleigh number, frequency, and 
wavenumber magnitude and direction for selected con- 

figurations (Q = 5, S, = 0, Le = RH = 10) 

Y SR S” RZ 

0" -10 -11.9 
-1 41.8 

0 43.8 
1 44.7 

10 17.1 
45” -10 3.36 

-1 39.7 

4 6 8 10 12 0 42.0 
Yima 

FIG. 7. Dual effect: locating the triplet (S,, Q, S,) for 
maximum critical horizontal Rayleigh number. 

1 43.4 
10 45.4 

a T 

0 4.21 
0 3.99 
0 3.99 
0 3.99 

18.4 3.51 
13.6 3.85 
11.1 3.14 
11.3 3.19 
14.1 3.15 
15.2 3.61 
16.9 3.37 
15.7 3.14 
15.7 3.14 
15.7 3.13 
18.5 3.14 

0 

Y 
(degrees) 

90 
90 
90 
90 
44 

315 
315 
315 
315 
63 

0 
0 
0 
0 

180 

by the reviewer since the accuracy limitations are very horizontal concentration gradient being always desta- 
distinct and non-overlapping. We can, however, draw bilizing. Of course this is true within the calculation 
a parallel between the conclusions from both analysis. range used by them, that translates roughly into: 
We will show that the results are not in disagreement S, > 1000. Our results, as seen in Fig. 6 for S, = 0, 
but, on the contrary, are complementary to each other. Q = 0, Le = 10, RH = 10, and S, from -10 to 10, 

The main conclusion of Sarkar and Phillips [9] (the shows that as S, increases, R, also increases (sta- 
one questioned by the reviewer) has to do with the bilizing effect), leading to an apparent contradiction. 
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It is important to stress the “apparent contradiction” 
here since it is obvious that the ranges used by either 
study are quite different (two orders of magnitude!) 
and that our results are not restricted by the mutu- 
ally compensating horizontal gradients constraint. 
We made some additional computations for RH = 
-&/Le, that satisfies the condition of mutually com- 
pensating horizontal gradients, as imposed by Sarkar 
and Phillips [9]. For Q = S, = 0, Le = 10, and 
1 < RH < 10. Our results show, for this particular 
case, that increasing RH its effect is always desta- 
bilizing, extending Sarkar and Phillips’ [9] conclusion 
for low RH value range. 

It is worth noting that our results in Fig. 6 also 
show that the rate of R, increase is clearly reduced as 
S, increases. Notice that for larger Q, the SH effect 
goes from stabilizing to destabilizing. We can specu- 
late then that, for larger Su and for Q = 0, there will be 
a turning point beyond which the Su effect is changed 
from stabilizing to nonstabilizing. Unfortunately our 
low order Galerkin approximation is not accurate 
enough to show the turning point for Q = 0. We point 
out, however, the recent analysis of horizontal 
inclined thermal gradient performed by Nield [lo] 
employing an Bth-order Galerkin approximation. His 
results clearly indicate that the horizontal gradient has 
a dual effect on the base flow. the critical vertical 
Rayleigh increasing as RH increases from 0 to 80 but 
then decreasing as R, increases further. 

8. CONCLUSION 

Our theoretical examination of convection induced 
by applied coplanar thermal and solutal gradients 
inclined to the vertical revealed the destabilizing effect 
of a net horizontal mass flux superimposed to the 
original Hadley circulation. Furthermore, our results 
indicate that high enough net mass flux, Q, can have 
an effect on the critical Rayleigh number even when 
the horizontal gradients are perpendicular to the 
direction of themass flux. The effect of increasing the 
positive vertical solutal Rayleigh number, S,, is always 

destabilizing while increasing the horizontal thermal 
gradient, RH, is stabilizing for the parameter range 
investigated. We also found a dual effect of the hori- 
zontal concentration gradient, Su, on the vertical criti- 
cal Rayleigh number : increasing Su has a stabilizing 
effect on the system, maximum at Q = 0, that 
decreases as Q increases up to a critical value beyond 
which the system becomes increasingly unstable. 
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